Source code for gnes.encoder.text.gpt

#  Tencent is pleased to support the open source community by making GNES available.
#
#  Copyright (C) 2019 THL A29 Limited, a Tencent company. All rights reserved.
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#  http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.


# noinspection PyUnresolvedReferences

from typing import List

import numpy as np

from ..base import BaseTextEncoder
from ...helper import batching, pooling_torch


[docs]class GPTEncoder(BaseTextEncoder): is_trained = True batch_size = 64 def __init__(self, model_dir: str, use_cuda: bool = False, pooling_strategy: str = 'REDUCE_MEAN', *args, **kwargs): super().__init__(*args, **kwargs) self.model_dir = model_dir self.pooling_strategy = pooling_strategy self._use_cuda = use_cuda
[docs] def post_init(self): import torch # Load pre-trained model tokenizer (vocabulary) self._init_model_tokenizer() self._use_cuda = self._use_cuda and torch.cuda.is_available() if self._use_cuda: self._model.to('cuda')
def _get_token_ids(self, x): return self._tokenizer.convert_tokens_to_ids(self._tokenizer.tokenize(x)) def _get_output_tensor(self, x): return self._model(x) def _init_model_tokenizer(self): from pytorch_pretrained_bert import OpenAIGPTTokenizer, OpenAIGPTModel self._tokenizer = OpenAIGPTTokenizer.from_pretrained(self.model_dir) self._model = OpenAIGPTModel.from_pretrained(self.model_dir) self._model.eval()
[docs] @batching def encode(self, text: List[str], *args, **kwargs) -> np.ndarray: import torch batch_size = len(text) # tokenize text tokens_ids = [] tokens_lens = [] max_len = 0 for _ in text: # Convert token to vocabulary indices token_ids = self._get_token_ids(_) token_len = len(token_ids) if max_len < token_len: max_len = token_len tokens_ids.append(token_ids) tokens_lens.append(token_len) batch_data = np.zeros([batch_size, max_len], dtype=np.int64) # batch_mask = np.zeros([batch_size, max_len], dtype=np.float32) for i, ids in enumerate(tokens_ids): batch_data[i, :tokens_lens[i]] = tokens_ids[i] # batch_mask[i, :tokens_lens[i]] = 1 # Convert inputs to PyTorch tensors tokens_tensor = torch.tensor(batch_data) tokens_lens = torch.LongTensor(tokens_lens) mask_tensor = torch.arange(max_len)[None, :] < tokens_lens[:, None] mask_tensor = mask_tensor.to( mask_tensor.device, dtype=torch.float32) if self._use_cuda: # If you have a GPU, put everything on cuda tokens_tensor = tokens_tensor.to('cuda') mask_tensor = mask_tensor.to('cuda') # Predict hidden states features for each layer with torch.no_grad(): # the encoded-hidden-states at the top of the model, as a # torch.FloatTensor of size [batch_size, sequence_length, hidden_size] output_tensor = self._get_output_tensor(tokens_tensor) output_tensor = pooling_torch(output_tensor, mask_tensor, self.pooling_strategy) if self._use_cuda: output_tensor = output_tensor.cpu() return output_tensor.numpy()
[docs]class GPT2Encoder(GPTEncoder): def _get_token_ids(self, x): return self._tokenizer.encode(x) def _get_output_tensor(self, x): return self._model(x)[0] def _init_model_tokenizer(self): from pytorch_pretrained_bert import GPT2Model, GPT2Tokenizer self._tokenizer = GPT2Tokenizer.from_pretrained(self.model_dir) self._model = GPT2Model.from_pretrained(self.model_dir) self._model.eval()